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A model for nonequilibrium wetting in 1 dimensions is introduced. It comprises adsorption and desorp-
tion processes with a dynamics that generically does not obey detailed balance. Depending on the rates of the
dynamical processes the wetting transition is either of first or second order. It is found that thmbaind
and the nonwefpinned states coexist and at®th thermodynamically stabie a domain of the dynamical
parameters that define the model. This is in contrast with equilibrium transitions where coexistence of ther-
modynamically stable states takes place only on the transition line.

PACS numbgs): 68.45.Gd, 05.40-a, 05.70.Ln, 68.35.Fx

Wetting phenomena are observed in a large variety ofsfies detailed balance and thus we can test our numerics
physical systems in which a planar substrate is exposed to&gainst theoretical predictions in the context of equilibrium
gas phase. The interactions between the substrate and tietting. Additionally we can explore the wider parameter
molecules of the gas phase lead to the formation of a liquigpace to clarify the role of the binding force under nonequi-
film close to the surfacgl]. By changing the temperature or librium conditions.
the partial pressure of the gas, such systems may exhibit a The model of Ref[6] is characterized by an adsorption
wetting transition from a phase where the thickness of théateq and a desorption rageand exhibits aontinuouswet-
film stays finite to a phase where the film grows and eventing transition at a certain threshotgl(p). The transition is
tually reaches a macroscopic size. related to a depinning process of an interface from a sub-

Much is known about equilibrium wetting transitions both strate, which may be described in general by a Kardar-Parisi-
theoretically and experimentally. Theoretically, they haveZhang(KPZ) equation in a hard-core potentfd]. The ad-
been modeled by considering the binding process of a flucditional short-range force is introduced by modifying the
tuating interface to a substrate. By using transfer matrix forgrowth rateq, at zero height. Thus, fa,<q (q,>q), there
mulation, it has been found that int11 dimensions, when is an attractiverepulsive interaction between the substrate
the interaction between the interface and the substrate &nd the bottom layer. We find that a sufficiently strong at-
short range, the depinning transition is continuf2ls How-  tractive interaction modifies the nature of the unbinding tran-
ever, when algebraically decaying long-range interactionsition, making it first order. Moreover, we observe that
are taken, the transition could become first of@dr On the ~ pinned and moving statesoexist as thermodynamically
other hand, in 2- 1 dimensions the wetting transition is gen- stable statesn a whole region of the parameter space rather
erally expected to be first order. However, disorder effectsthan on a line, as in the case of equilibrium transitions. This
such as those existing in porous media, could make the traiind of behavior has been observed in the past in other non-
sition continuoug4]. equilibrium modelg8,9]. Here we demonstrate that nonequi-

When passing to nonequilibrium phenomena, most of théibrium wetting processes can exhibit phase coexistence.
efforts have been made in the characterization of the wet A. Definition of the modelThe model is defined in terms
phase, namely, the description of the growth process fa@f growth of a one-dimensional interface on a latticeNof
away from the substrate. Various models have been introsites with associated height variablgs=0,1, . . . = and pe-
duced to account for observed scaling behavior in homogeriodic boundary conditions. We considerrestricted solid-
neous as well as disordered environmdBis on-solid (RSOS growth process, where the height differ-

Concerning the transition itself, a simple ences between neighboring sites can take only valued 0,
(1+1)-dimensional model has recently been introducedn addition, a hard-core wall at zero height is introduced. The
where a continuous transition is observed in the absence #hodel depends on three parametgrs|y, andp. It evolves
any binding force between the interface and the subdiéate by random sequential updates, i.e., in each update attempt a
It would be of interest to study the nature of the transition assitei is randomly selected and one of the following processes
the interaction between the interface and the substrate is vais carried out: adsorption of an adatom with probabitity
ied. At at the bottom layeh;=0 and probabilityg At at higher

Motivated by the knowledge of the behavior of equilib- layersh;>0,
rium systems, we generalize the model introduced in Féf.
by adding an attractive binding force between substrate and hj—h;+1, D
surface layer. We find that evesimort-rangeattractive inter-
action is capable of making the transition first order. In fact,desorption of an adatom from the edge of a terrace with
for a suitable choice of the parameter values the model saprobability 1At,

1063-651X/2000/6@)/10324)/$15.00 PRE 61 R1032 ©2000 The American Physical Society



RAPID COMMUNICATIONS

PRE 61 FIRST-ORDER PHASE TRANSITION IN A1+1)-. .. R1033
hi—min(h;_1,h; it 1), 2 L L
[ growing phase
desorption of an adatom from the interior of a terrace with Lr T, """""""""
probability p At, 0s [ pinned phase tricritical point |
hi—h,—1 if h,_;=h,=h,,,>0. (3) 1 o s Vi «l ]
A process is carried out only if the resulting interface height 0.4 _ 0 =1 ]
h; is non-negative and does not violate the RSOS constraint i
[hi—hj.q<1. _ o o2 [ L]
The phase diagram for the cagg=qg has been studied in ‘1;
[6,10], where a continuous wetting transition was found. I . . . . .
Clearly, the moving state is not affected gy and thus the 0 0 02 04 06 08 1 1.2

transition line above which it is stable remains unchanged. q,
However, the stability of the pinned state strongly depends

on gy, modifying the phase diagram and the nature of the FIG. 1. Phase diagram fgr=1. The discontinuougontinuous
wetting transition. In order to gain some insight into the part of the transition line is represented by a sétidshedlline. The
mechanism leading to first-order transition, we first consideinset illustrates the potentid(h) in Eq. (5).

the p=1 case. Here detailed balance is obej@l where-

fore the transition can be described in the framework of equi- g/qo if |h—I|<1 and!|=0

librium statistical mechanidsl1]. We then consider the case |

p#1 numerically. Thi=9d i |h—.I|s1 and >0 6)
B. The case gl. Forp=1 andq=<1 the dynamic rules 0 otherwise,
satisfy detailed balance and the probability of finding the . .
interface in a configuratiofhy , . .. )hy} can be expressed in We compute the eigenvectab of T corresponding to the
terms of a potentiaV(h) by largest eigenvaluew, which determines the steady-state
properties of the system. Fg=1 the solution reads
N
- - —h
P(hy, ... ,hN)=Z§16XF{—E V(hi)}, (4) n=(z+1)/qo, 0=do, ®n=2", (7)
i=1
whereh=1 and
where th(.a partition surﬁN=§hl ,,,,, hy egq—EiV(hi)] runs 1+2q0—3qg 1
over all interface configurations obeying the RSOS con- =2(1—q)_§' (8
— Yo

straint. The potential is given by

_ The stationary density of exposed sites at the bottom layer is
* if h<0 given byng= @3/ 5_,bE. It is nonzero forgy<2 and van-
V(h)=¢ —In(a/qy) if h=0 (5) ishes linearly at the ftricritical point. This proves the exis-
“hin(g) if h>0. tence of the first-order phase transition_line in Fig.-l.
In Ref. [6] the densityn, and the interface widthw

=((h—(h))?*? at q,=q were found to scale as
As shown in the inset of Fig. 1, the attractive interaction ((h=(m)% Go=4

between substrate and bottom layer is incorporated as a po- No~(de— )%, w~(q.—q) 7, 9

tential well at zero height. Fay<<1 the slope of the potential

is positive so that the interface is always pinned to the wallwith the critical exponentg,=1 andy= 3. Using the trans-

For q>1, where the slope is negative, the interface carfer matrix approach, we can prove that these bulk exponents

“tunnel” through the potential barrier and eventually de- remain valid along the entire second-order phase transition

taches from the substrate. It should be noted that in this caskne, except for the tricritical point wherg,=y=3. More-

the equilibrium distribution(4) is no longer valid, i.e., the over, approaching the tricritical point from the left along the

system enters a nonstationary nonequilibrium phase. first-order transition line, it can be shown that the two quan-
The nature of the transition depends on the depth of théties scale as

potential well. Forgy< 3, the potential well is deep enough

to bind the interface to the wall at the transition pomt no~(q3—q0)X3, W~(q3—qo)’7*, (10

=1, giving rise to a localized equilibrium distribution with a

discontinuougransition. Forg,> %, no localized solution ex- wherexg = y*=1.

ists atqg=1 and the transition becomes continuous. The two C. The case #1. In this case the dynamic rules do not

transition lines are separated bytrcritical point at gj satisfy detailed balance and the model cannot be solved us-

=%, q.=1. ing the previous methods. Performing Monte Carlo simula-
In order to prove the existence of the first-order line, wetions we determined the phase diagrams for various values of

apply a transfer matrix formalisf2]. Defining a transfer p. For p<1 we find that the moving and the pinned phases

matrix T acting in spatial direction by coexistin a whole region of the parameter space rather than
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pinned . FIG. 3. Temporal evolution of a partially detached interface in
phase the coexistence regime=0.8, qo=p=0.2. Initially a large droplet

is introduced by hand. The droplet quickly grows, reaches a trian-
gular shape, and finally shrinks at constant velocity.

0 0.2 0.4 0.6 0.8 1 to fluctuations, the resulting droplet grows and reaches an
Qo almost triangular shape. In the coexistence regime, the drop-
) ) lets are biased to shrink in a time proportional to its size,
~ FIG. 2. Phase diagram fqr=0.2. The inset shows the average regylting in a stable pinned phase. However, spontaneously
time rfor.the interface to deta.ch.from the wal! as a functlon of thecreated small islands next to the bottom layer contribute to
system sizeN for p=qo=0.2 inside and outside the coexistence yne proadening of the droplets, reducing the range of phase
regime. coexistence. This explains why the upper boundary of the
, ) , _ i coexistence regime decreaseg|ass increased. At the upper
just on a line, as is the case for equilibrium first-order tra”'boundary the stationary density of exposed sites at the bot-
sitions. As shown in Fig. 2, the coexistence regime fior 5, layern, is found to change discontinuously.
=0.2 ends at the tricritical pointgg=0.515(10), qc The transition line above which the unbound phase is
=0.68682), where the second-order phase transition linestaple is independent of the growth ratg This line is the
starts. Unlike metastable states, the pinned phatiesno-  |ower curve in Fig. 4, which is common to all four diagrams.

ﬁ]}’“?‘m'ca”y stableinside th.e”coexlflter;lce regime, 1.€., 'S Eor 0o smaller than some threshoEj,, the pinned and the
|het|me_ rﬂ?ro_ws tex;:)gpenztla y with the system size, as ,4und phases coexist in a certain region of the phase dia-
shown In the InSet o1 Fig. 2. gram. As can be seen in Fig. 4, this region is bounded by two

For p=>1, however,.there IS no region of phasepoemst—lines that intersect to the right at the equilibrium transition
ence and the phase diagram is similar to that of Fig. 1. Foboint p=q=1. For gy<{,,~0.399, this is the only inter-
. c0=0.399,

instance, fop=2 the first-order phase transition line ends atgetion point of the two lines and the phase coexistence re-
the tricritical pointqg; =0.731), ch1-232q3)- Forp#l., gion extends down tg=0. On the other hand, fog,
we expect that Eqsl9) and (10) still describe the scaling = “the two lines also intersect on the left at another tric-

behgyior at the tricritical point, although with different sets ica) point, reducing the size of the region of phase coex-
of critical exponents.

In order to understand the mechanism leading to phase
coexistence fop<1, let us consider the evolution of a large

growing phase

droplet(an interval where the interface is detached from the 1 1 PC .
bottom layey in the vicinity of the upper terminal point of 4 q
the coexistence regimg=1, qo=0. Because of the RSOS 0.5 0.5 |

constraint, the growing droplet eventually reaches an almos
triangular shape with unit slope at the edges. The interface o 9~ 0<q,<0.3998
the triangular droplet fluctuates predominantly by diffusion ¢ ' L
of pairs of sites with equal height. Inspecting the dynamic 0 05 P 1 15 0 05 P 1 L5
rules, it is easy to verify that these “landings” of the stair- T T T T

case move upwards with rateand downwards with rate 1. PC o1
Hence, forg>1, qo=0 the droplet is stable with a life-time 1r N 1 It e i
exponential in its lateral size. For>1 andqgy>0, fluctua- q 9 el

tions of the bottom layer are biased to move upwaro_ls at they r/ \tricn'tic al point { 05 r/’ i
edges of the droplet. Thus the droplet grows and the interface _ _
eventually detaches from the bottom layer. On the other 0.3998<q,<q, 9%

hand, ifqy=0 andg.<q<1, fluctuations at the top of the 0 L 0 L

triangular droplet are biased to diffuse downwards to the 0 0.5 P 1 15 0 0.5 P 1 L5

edges. Therefore, the droplet shrinks at constant velocity in a . 4. Schematic phase diagram in fhey plane, showing the

time proportional to its size, ensuring the stability of theyegions of phase coexistendeC) for fixed go. Discontinuous and

pinned phase. continuous transition lines are represented by solid and dashed
As shown in Fig. 3, this robust mechanism for the elimi- lines, respectively. In the third panel the phase coexistence regime

nation of droplets also works for positive valuesogf If the  is enlarged artificially. The star denotes the equilibrium transition
interface detaches from the substrate over some distance dpeint (see text
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istence. This region disappearsq@t:aol On the basis of our lets, once formed, will shrink at constant VelOCity. Thus, the
numerical simulations, it is not possible to conclude whethefnoving and the pinned phase can only coexist in those parts
a) is equal or strictly smaller than 2/3. of the phase diagram whekeis negative. In fact, as shown

D. DiscussionWithin a more general framework, the co- i [6], A is negative along the transition line fpr<1 and
existence of the moving and the pinned phase may be vieweghanges sign gb=1. _ _
as follows. The evolution of the interface may be described The phenomenon of phase coexistence was first observed
in terms of the KPZ equation in Toom’s two-dimensional north-east-center voting model
5 5 ’ [8]. It was also shown that open boundaries in certain one-
dh=DV°h+A(Vh)*+{(x,) +V'(h)+vo (1)  dimensional diffusive models may exhibit similar phenom-
with positive heightdi(x,t)>0, where the velocity, plays ena[9]. The model dlscussed in the present work demon-_
_ S strates that phase coexistence can also be observed in
the role of g—q.. Clearly, for \=0 the transition takes . o .
homogeneously driven nonequilibrium wetting processes

place atv,=0. ForA>0, the nonlinear term of Eq11) may ith ttractive int tion bet Il and surf |
be interpreted as an additional force acting on tilted parts of/Ith an aftractive interaction between wall and surface layer.

the interface in the direction of growth. This force supports \We would like to thank M.R. Evans for valuable discus-
the growth of droplets wherefore the interface detaches fogjons. The support of the Israel Science Foundation, the Is-
any vo>0. However, ifA<0 this force acts against the di- rae| Ministry of Science, the French Ministry of Research
rection of growth. Consequently, a sufficiently tilted inter- ang Technology, and the Inter-University High Performance

face does not propagate and may even move downwards. Fetomputation Center is gratefully acknowledged. H.H. would

V>0 this leads to the formation of fluctuating droplets with |i o to thank the Weizmann Institute for hospitality where

a triangular shape and a finite slope at the edges. If the Sho&B’arts of this work have been done.

range force at the bottom layer is strong enough, such drop-
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