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First-order phase transition in a „1¿1…-dimensional nonequilibrium wetting process
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A model for nonequilibrium wetting in 111 dimensions is introduced. It comprises adsorption and desorp-
tion processes with a dynamics that generically does not obey detailed balance. Depending on the rates of the
dynamical processes the wetting transition is either of first or second order. It is found that the wet~unbound!
and the nonwet~pinned! states coexist and areboth thermodynamically stablein a domain of the dynamical
parameters that define the model. This is in contrast with equilibrium transitions where coexistence of ther-
modynamically stable states takes place only on the transition line.

PACS number~s!: 68.45.Gd, 05.40.2a, 05.70.Ln, 68.35.Fx
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Wetting phenomena are observed in a large variety
physical systems in which a planar substrate is exposed
gas phase. The interactions between the substrate an
molecules of the gas phase lead to the formation of a liq
film close to the surface@1#. By changing the temperature o
the partial pressure of the gas, such systems may exhi
wetting transition from a phase where the thickness of
film stays finite to a phase where the film grows and ev
tually reaches a macroscopic size.

Much is known about equilibrium wetting transitions bo
theoretically and experimentally. Theoretically, they ha
been modeled by considering the binding process of a fl
tuating interface to a substrate. By using transfer matrix f
mulation, it has been found that in 111 dimensions, when
the interaction between the interface and the substrat
short range, the depinning transition is continuous@2#. How-
ever, when algebraically decaying long-range interacti
are taken, the transition could become first order@3#. On the
other hand, in 211 dimensions the wetting transition is ge
erally expected to be first order. However, disorder effe
such as those existing in porous media, could make the t
sition continuous@4#.

When passing to nonequilibrium phenomena, most of
efforts have been made in the characterization of the
phase, namely, the description of the growth process
away from the substrate. Various models have been in
duced to account for observed scaling behavior in homo
neous as well as disordered environments@5#.

Concerning the transition itself, a simp
(111)-dimensional model has recently been introduc
where a continuous transition is observed in the absenc
any binding force between the interface and the substrate@6#.
It would be of interest to study the nature of the transition
the interaction between the interface and the substrate is
ied.

Motivated by the knowledge of the behavior of equili
rium systems, we generalize the model introduced in Ref.@6#
by adding an attractive binding force between substrate
surface layer. We find that evenshort-rangeattractive inter-
action is capable of making the transition first order. In fa
for a suitable choice of the parameter values the model
PRE 611063-651X/2000/61~2!/1032~4!/$15.00
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isfies detailed balance and thus we can test our nume
against theoretical predictions in the context of equilibriu
wetting. Additionally we can explore the wider paramet
space to clarify the role of the binding force under noneq
librium conditions.

The model of Ref.@6# is characterized by an adsorptio
rateq and a desorption ratep and exhibits acontinuouswet-
ting transition at a certain thresholdqc(p). The transition is
related to a depinning process of an interface from a s
strate, which may be described in general by a Kardar-Pa
Zhang~KPZ! equation in a hard-core potential@7#. The ad-
ditional short-range force is introduced by modifying th
growth rateq0 at zero height. Thus, forq0,q (q0.q), there
is an attractive~repulsive! interaction between the substra
and the bottom layer. We find that a sufficiently strong
tractive interaction modifies the nature of the unbinding tra
sition, making it first order. Moreover, we observe th
pinned and moving statescoexist as thermodynamicall
stable statesin a whole region of the parameter space rath
than on a line, as in the case of equilibrium transitions. T
kind of behavior has been observed in the past in other n
equilibrium models@8,9#. Here we demonstrate that nonequ
librium wetting processes can exhibit phase coexistence

A. Definition of the model. The model is defined in term
of growth of a one-dimensional interface on a lattice ofN
sites with associated height variableshi50,1, . . . ,̀ and pe-
riodic boundary conditions. We consider arestrictedsolid-
on-solid ~RSOS! growth process, where the height diffe
ences between neighboring sites can take only values 0,61.
In addition, a hard-core wall at zero height is introduced. T
model depends on three parametersq, q0, andp. It evolves
by random sequential updates, i.e., in each update attem
site i is randomly selected and one of the following proces
is carried out: adsorption of an adatom with probabilityq0
Dt at the bottom layerhi50 and probabilityq Dt at higher
layershi.0,

hi→hi11, ~1!

desorption of an adatom from the edge of a terrace w
probability 1Dt,
R1032 ©2000 The American Physical Society



ith

h
ai

d

e
nd
th
he
de

u
e

he
n

on

on
p

l
al
a

e-
as

th
h

a

w

we

te

r is

is-

nts
tion

e
n-

ot
us-

la-
s of
es
an

RAPID COMMUNICATIONS

PRE 61 R1033FIRST-ORDER PHASE TRANSITION IN A~111!- . . .
hi→min~hi 21 ,hi ,hi 11!, ~2!

desorption of an adatom from the interior of a terrace w
probability p Dt,

hi→hi21 if hi 215hi5hi 11.0. ~3!

A process is carried out only if the resulting interface heig
hi is non-negative and does not violate the RSOS constr
uhi2hi 61u<1.

The phase diagram for the caseq05q has been studied in
@6,10#, where a continuous wetting transition was foun
Clearly, the moving state is not affected byq0 and thus the
transition line above which it is stable remains unchang
However, the stability of the pinned state strongly depe
on q0, modifying the phase diagram and the nature of
wetting transition. In order to gain some insight into t
mechanism leading to first-order transition, we first consi
the p51 case. Here detailed balance is obeyed@6#, where-
fore the transition can be described in the framework of eq
librium statistical mechanics@11#. We then consider the cas
pÞ1 numerically.

B. The case p51. For p51 andq<1 the dynamic rules
satisfy detailed balance and the probability of finding t
interface in a configuration$h1 , . . . ,hN% can be expressed i
terms of a potentialV(h) by

P~h1 , . . . ,hN!5ZN
21 expF2(

i 51

N

V~hi !G , ~4!

where the partition sumZN5(h1 , . . . ,hN
exp@2(iV(hi)# runs

over all interface configurations obeying the RSOS c
straint. The potential is given by

V~h!5H ` if h,0

2 ln~q/q0! if h50

2h ln~q! if h.0.

~5!

As shown in the inset of Fig. 1, the attractive interacti
between substrate and bottom layer is incorporated as a
tential well at zero height. Forq,1 the slope of the potentia
is positive so that the interface is always pinned to the w
For q.1, where the slope is negative, the interface c
‘‘tunnel’’ through the potential barrier and eventually d
taches from the substrate. It should be noted that in this c
the equilibrium distribution~4! is no longer valid, i.e., the
system enters a nonstationary nonequilibrium phase.

The nature of the transition depends on the depth of
potential well. Forq0, 2

3 , the potential well is deep enoug
to bind the interface to the wall at the transition pointqc
51, giving rise to a localized equilibrium distribution with
discontinuoustransition. Forq0. 2

3 , no localized solution ex-
ists atq51 and the transition becomes continuous. The t
transition lines are separated by atricritical point at q0*
5 2

3 , qc51.
In order to prove the existence of the first-order line,

apply a transfer matrix formalism@2#. Defining a transfer
matrix T acting in spatial direction by
t
nt

.
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e
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Th,l5H q/q0 if uh2 l u<1 and l 50

ql if uh2 l u<1 and l .0

0 otherwise,

~6!

we compute the eigenvectorf of T corresponding to the
largest eigenvaluem, which determines the steady-sta
properties of the system. Forq51 the solution reads

m5~z11!/q0 , f05q0 , fh5zh, ~7!

whereh>1 and

z5
A112q023q0

2

2~12q0!
2

1

2
. ~8!

The stationary density of exposed sites at the bottom laye
given byn05f0

2/(h50
` fh

2 . It is nonzero forq0, 2
3 and van-

ishes linearly at the tricritical point. This proves the ex
tence of the first-order phase transition line in Fig. 1.

In Ref. @6# the densityn0 and the interface widthw
5Š(h2^h&)2

‹

1/2 at q05q were found to scale as

n0;~qc2q!x0, w;~qc2q!2g, ~9!

with the critical exponentsx051 andg5 1
3 . Using the trans-

fer matrix approach, we can prove that these bulk expone
remain valid along the entire second-order phase transi
line, except for the tricritical point wherex05g5 1

3 . More-
over, approaching the tricritical point from the left along th
first-order transition line, it can be shown that the two qua
tities scale as

n0;~q0* 2q0!x0* , w;~q0* 2q0!2g* , ~10!

wherex0* 5g* 51.
C. The case pÞ1. In this case the dynamic rules do n

satisfy detailed balance and the model cannot be solved
ing the previous methods. Performing Monte Carlo simu
tions we determined the phase diagrams for various value
p. For p,1 we find that the moving and the pinned phas
coexistin a whole region of the parameter space rather th

FIG. 1. Phase diagram forp51. The discontinuous~continuous!
part of the transition line is represented by a solid~dashed! line. The
inset illustrates the potentialV(h) in Eq. ~5!.
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just on a line, as is the case for equilibrium first-order tra
sitions. As shown in Fig. 2, the coexistence regime forp
50.2 ends at the tricritical pointq0* 50.515(10), qc

50.6868(2), where the second-order phase transition l
starts. Unlike metastable states, the pinned phase isthermo-
dynamically stableinside the coexistence regime, i.e.,
lifetime t grows exponentially with the system size,
shown in the inset of Fig. 2.

For p.1, however, there is no region of phase coex
ence and the phase diagram is similar to that of Fig. 1.
instance, forp52 the first-order phase transition line ends
the tricritical pointq0* 50.73(1), qc51.2326(3). For pÞ1,
we expect that Eqs.~9! and ~10! still describe the scaling
behavior at the tricritical point, although with different se
of critical exponents.

In order to understand the mechanism leading to ph
coexistence forp,1, let us consider the evolution of a larg
droplet~an interval where the interface is detached from
bottom layer! in the vicinity of the upper terminal point o
the coexistence regimeq51, q050. Because of the RSOS
constraint, the growing droplet eventually reaches an alm
triangular shape with unit slope at the edges. The interfac
the triangular droplet fluctuates predominantly by diffusi
of pairs of sites with equal height. Inspecting the dynam
rules, it is easy to verify that these ‘‘landings’’ of the sta
case move upwards with rateq and downwards with rate 1
Hence, forq.1, q050 the droplet is stable with a life-time
exponential in its lateral size. Forq.1 andq0.0, fluctua-
tions of the bottom layer are biased to move upwards at
edges of the droplet. Thus the droplet grows and the inter
eventually detaches from the bottom layer. On the ot
hand, if q050 andqc,q,1, fluctuations at the top of the
triangular droplet are biased to diffuse downwards to
edges. Therefore, the droplet shrinks at constant velocity
time proportional to its size, ensuring the stability of t
pinned phase.

As shown in Fig. 3, this robust mechanism for the elim
nation of droplets also works for positive values ofq0. If the
interface detaches from the substrate over some distance

FIG. 2. Phase diagram forp50.2. The inset shows the averag
time t for the interface to detach from the wall as a function of t
system sizeN for p5q050.2 inside and outside the coexisten
regime.
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to fluctuations, the resulting droplet grows and reaches
almost triangular shape. In the coexistence regime, the d
lets are biased to shrink in a time proportional to its si
resulting in a stable pinned phase. However, spontaneo
created small islands next to the bottom layer contribute
the broadening of the droplets, reducing the range of ph
coexistence. This explains why the upper boundary of
coexistence regime decreases asq0 is increased. At the uppe
boundary the stationary density of exposed sites at the
tom layern0 is found to change discontinuously.

The transition line above which the unbound phase
stable is independent of the growth rateq0. This line is the
lower curve in Fig. 4, which is common to all four diagram
For q0 smaller than some thresholdq̄0, the pinned and the
unbound phases coexist in a certain region of the phase
gram. As can be seen in Fig. 4, this region is bounded by
lines that intersect to the right at the equilibrium transiti
point p5q51. For q0,qc,0.0.399, this is the only inter-
section point of the two lines and the phase coexistence
gion extends down top50. On the other hand, forq0
.qc,0 the two lines also intersect on the left at another tr
ritical point, reducing the size of the region of phase coe

FIG. 3. Temporal evolution of a partially detached interface
the coexistence regimeq50.8, q05p50.2. Initially a large droplet
is introduced by hand. The droplet quickly grows, reaches a tr
gular shape, and finally shrinks at constant velocity.

FIG. 4. Schematic phase diagram in thep, q plane, showing the
regions of phase coexistence~PC! for fixed q0. Discontinuous and
continuous transition lines are represented by solid and das
lines, respectively. In the third panel the phase coexistence reg
is enlarged artificially. The star denotes the equilibrium transit
point ~see text!.
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istence. This region disappears atq05q̄0. On the basis of our
numerical simulations, it is not possible to conclude whet
q̄0 is equal or strictly smaller than 2/3.

D. Discussion. Within a more general framework, the co
existence of the moving and the pinned phase may be vie
as follows. The evolution of the interface may be describ
in terms of the KPZ equation

] th5D¹2h1l~¹h!21z~x,t !1V8~h!1v0 ~11!

with positive heightsh(x,t).0, where the velocityv0 plays
the role of q2qc . Clearly, for l50 the transition takes
place atv050. Forl.0, the nonlinear term of Eq.~11! may
be interpreted as an additional force acting on tilted parts
the interface in the direction of growth. This force suppo
the growth of droplets wherefore the interface detaches
any v0.0. However, ifl,0 this force acts against the d
rection of growth. Consequently, a sufficiently tilted inte
face does not propagate and may even move downwards
v0.0 this leads to the formation of fluctuating droplets w
a triangular shape and a finite slope at the edges. If the sh
range force at the bottom layer is strong enough, such d
,

d

v.
r

ed
d

f
s
or

or

rt-
p-

lets, once formed, will shrink at constant velocity. Thus, t
moving and the pinned phase can only coexist in those p
of the phase diagram wherel is negative. In fact, as show
in @6#, l is negative along the transition line forp,1 and
changes sign atp51.

The phenomenon of phase coexistence was first obse
in Toom’s two-dimensional north-east-center voting mod
@8#. It was also shown that open boundaries in certain o
dimensional diffusive models may exhibit similar phenom
ena @9#. The model discussed in the present work dem
strates that phase coexistence can also be observe
homogeneously driven nonequilibrium wetting proces
with an attractive interaction between wall and surface lay
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